
1980

UCRL- 85071
PREPRINT

SUDDENLY PRAXIS

James R. Greenwood

CIRCULATIONCOPY
SUBJECT TO RECALL

‘N T!A/() WEEKS

Fall DECUS U.S. Symposium
Town & Country Hotel

San Diego, CA.
November 4-7, 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

SUDDENLY PRAXIS*

Jaes R. Greenwood
Lawrence Livermore National Laboratory

Livermore, CA. 94550

A8STRACT

Praxis - The practice of the progranwning art, science, and skill.

Praxis is a high order languaqe designed for efficient programming of

control and systems applications. Praxis is a comprehensive, stronqly. .

typed, block structured language in the tradition of Pascal, with much of

the power of the languages Mesa and Ada. The language supports the

development of systems composed of separate modules, user-defined data

types, exception handling, detailed control mechanisms, and encapsulated

data and routines. Direct access to machine facilities, efficient bit

manipulation, and interlocked critical regions are provided within the

language.

*Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

-1-

INTRODUCTION

Praxis is a modern block structured fully t.vped algor.mhmic proqramminq

language for control and system implementation applications. It’s desiqn

has been influenced by the languages. Simula, BCPL, Euclid, PL/1, Jovial,

CS-4, Pascal, Alphard, Mesa, and Bliss;
?

as well as by the Department of

Defense’s language development effort and the proposeclAda language. As

to scope and power,
+.

Praxis most closely resembles Ada and Mesa.

The control environment differs in important ways frun application to

application and machine to machine; the language must have features to

handle these differences. High level facilities which mask machine depen-

dencies and foster machine independence (portability) usually prevent

exactly the programming capability needed for real-time control applica-

tions programming. Praxis is a high level language with controlled

machine dependent access methods.

The language is “strongly t,~ed”. The programmer is given a collection

of predefine types and has the ability to construct new t,vpes. Every

variable, constant, parameter, and expression has a type. All types can

be deduced at ccmpile-time and the compiler requires that each value be

used in a way consistent with the rules associated with its type. For

instance, it is a compile-time error to attempt to pass an integer

parameter to a routine which requires a real parameter.

The language is “blocked structured”. Blocks are a method of packaging

statements and declarations such that the scope of the statements is

clearly specified and controlled. The language has more than fifteen

block structured statements, each of which is delimited by a form

“XXX/endXXX” pair where “XXX” represents the particular statement nane. +.4

i

-2-

For instance:

for endfor

if endif

procedure . . . endprocedure

select endselect

The block structuring also enforces a particular programing style which

has been found to be more readable and maintainable than unstructured

programming.

INTENDED APPLICATION

The language has been designed for control and communications programming

applications. In addition, system programming applications have been

found to require the sime language facilities.

These applications impose stringent requirements in such areas as:

efficiency of object code.

- direct access to machine facilities.

efficient bit manipulation.

complex data and control structures.

large program developed by a teem.

maintenance and upgrades.

Also the programmer of these applications requires detailed control over

the code produced by the ccxnpiler, in such areas as optimization, variable

allocation and implicit run-time support. It is important in these

applications that exactly “what is going on” is explicitly represented by

the prograrmner.

-3-

PROGRAMMING EXAMPLES

A simple example in the language is the matrix multipl.y of twoN byN

matrices named “specA” and “specB” and storing result in “Spectrwn”.

for I := to N do—.
for J := to N—

T:=O

for K := 1

do—

to N do——

T := T + specA [I,K] * specB [K, J]
endfor

Spectrun [I, J] := T

endfor

endfor

This example onl.ymakes sense within the scope of the declarations for

the variables used. All the variables, except the “for” loop indices

must be declared before use. Tfius the code above would be preceded by

scmething of the form:

declare

N = 32

T: integer

specA : 9 [l””NY~””Nlx.@lez

specB : array [1..N,1..N] of inteqer—

Spectrum : array [l. .N,l..N]of integer—

enddeclare

This declaration block could be written more efficiently in various

forms. One method would be to use a user defined type for the array

declarations which then would enforce that the three arrays are all the

-4-

same type, and remain so with subsequent software maintenance. Thus the

declarations COU1d take the form:

declare

..

N = 32

T: integer

matrix is array [1...N,l..N] of integer—
specA : matrix

specB : matrix

spectrum : matrix

enddecl are

Note that we have used the language’s cormnent convention “//” which

designates that all text to the right on the line is treated as a

comment. In addition this LRM underlines all language reserved words in

the exanples.

Another example is a simple exchange sort in which an array values is

sorted into ascending order:

&cl are

N = 100

cJatavv3!rl” ”w!u!@H
done : boolean

enddecl are

.*. code to store values in data ...

repeat

done := true

for K :=2 toNdo——
if data [K-1] > data [K] do—

swap (data[K-l], data[ti)

done := false

endif

endfor

until done

-5-

The “repeat” block structured statement is an exception to

syntax rule, in that the “until” is the end for the repeat

the ending

block. The

“repeat/until” has the sanantics that the included statements are executed

repeatedly until such a time that the expression after the “until” is

true. Other looping constructs are available in the language including

the while/endwhile, and three forms of the for/endfor.

,-
A more detailed control programing application is shown below, which

directly reads a hardware input/output device on a PDP-11 ccrnputer in a

multiprocess environment. In this example the resource (i.e., 1/0 device)

is protected by the interlock variable padlock in a critical “region”.

Another process with similar code using the same resource cannot preempt

the critical region code sequence.

Declare

status : volatile location (8!176420) logical

datum : volatile location (8!176429) char

padlock : static interlock

temp : char

enddeclare

. . .

!w.!z!. padlockQ
Repeat until status and 8#200

temp := datun

enciregion

The attribute volatile on the variables “status” and “datun” informs the

compiler that the variables must be referenced directly each time they

are mentioned in the program, and no optimization are to be performed on

those variables. This attribute allows variables to be used as 1/0

registers as above, as well as to be used in sfiaredmemory.

-6-

The location attribute informs the compiler to place the variable in the

physical address specified by the octal (8!) constant in the parenthesis.

The variable is static and always resides at that location.

A more complex application which demonstrates the ability in the language

to bypass the strong t~ing (when desired) is the function “Upper” which

converts a lower-case letter to an uppercase letter.
..

function Upper (inchar:char) returns outchar:char

declare

bits is 8 bit logical——
mask = 8#337

lows is set of char range $a..$z—— ——
lower = lows($a to $2)—

enddeclare

if inchar in lower do. — —
outchar := inchar

return

endif

outchar := force char ((force bits (inchar)) and mask)

endfunction {Upper}

In the above, the force explicitly overrides the t.ype-checking mechanism,

thus allowing a logical operation to be performed on the bit string

representing the input character.

/“
4

-7-

LANGUAGE FEATURES

This sect on outlines some of the m~”or features of Praxis.

Control and Iteration Statements
.

while expr do—
sentence; . . . endwhile

repeat sentence; . . . until expr

if expr do sentence; . . . orif expr do— — —
sentence; . . . otherwise

sentence; . . . endif

select expr from case item : sentence;—
default : sentence; . . . endselect

Upon id, . . . leave

sentence; . . “9
case id : sentence; . . . endupon

via id

break label

loop label

For id := expr to expr do— —
sentence; . . . endfor

For id := expr downto expr do—
sentence; . . . endfor

For id in expr do sentence; . . . endfor—— —
For id := expr then expr while expr do—

sentence; . . . endfor

-8-

Predefine Types

A type specifies a set of properties and attributes for elments of that

type, and the permissible usage of variables of that t.vpe. The

predefine types are:

integer real char boo1ean

logical interlock cardinal enumeration

array structure function procedure

pointer set long_real

Most are common to other Pascal-like languages, with the exception of

procedure and function variables, and interlocks.

User defined types and abstract data types can be declared. All types

can be determined at ccrnpile-time and the compiler requires that each

usage be consistent with the rules for that t.~e. This includes strong

type checking between separately compiled modules.

Routines

Two forms of routines are available; procedures and functions. Formal

parameters are typed and are checked for consistency at compile-time with

the actual parameters passed on the invocation. Procedure declarations

take the form:

Procedure Test (X : integer, Y : ref reall——
sentence; . . .

endprocedure {Test}

-9-

and functions are the form:

Function Zap

sentence;

z: blap) returns t : zip

● .

endfunction {Zap}

Explicit exit from routines can be programed by the return statement.

The formal parameter specification allows the passing of parameters by

~ or~ in anyof three modes~, inout, and out. In addition,

keyword (i.e., rimed) formal parameters are available, as well as,

optional parameters.

Flexible arrays can be used as formal parameters to allow routines which

take any size array as parameters. Fortran and Interrupt routine

linkages are implemented.

Modules

A module concept is used to encapsulate data and code. The separate

compilation mechanism, abstract data type declaration, and data and code

protection are implanented with modules. The form is:

Module Test

Import id, . . . from Module

= id~ “ “ “ mModlJle2
Export id, . . .

mid> “ “ “QModule3
Use Module4

sentence;

endnodule {Test }

-1o-

The type attributes hiolden and readonly restrict data access on items

exported with those attributes.

Modules may be nested and separately compiled. T.vpechecking is done

between separately compiled modules. Whole modules can be “imported”

the Use statement. The imports and uses are at any level as normal

declarations.

by

Exception Handling

User defined exceptions and guard blocks allow progranrningof error and

abort conditions. Exceptions are declared with the s.vntax:

and

Exception reached limit, overflow—

utilized within the block structured statement:

Guard sentence; . . . catch

case reached limit : sentence; . . .—
default : sentence; . . . endguarc!

Exceptions are dynamically scoped and invoked by the statements:

raise reach limit—

reraise

raise overflow finishing lock

-11-

IMPLEMENTATION STATUS

Three canpilers for Praxis are operational and nearly complete:

VAX/VMS generating native code

VAX/VMS generating PDP-11 code

PDP-11/RSX-llM generating PDP-11 code

The compilers written in Praxis are self supporting on each systen and

have been in use for eight months.

Praxis Compilers under UNIX and RT-11. are being investigated.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of

the Lbsited States Government. Neither the United States Government nor the

University of California nor any of their employees, makes any warranty, ex-

press or implied, or assumes any legal liability or responsibility for the ac-

curacy, completeness, or usefulness of any information, apparatus, product. or

process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial products, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation. or favoring by the United

States Government or the University of California. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United

States Government thereof, and shall not be used for advertising or product en-

dorsement purposes.

-12-

fb

:

